ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
3D-printed tool at SRS makes quicker work of tank waste sampling
A 3D-printed tool has been developed at the Department of Energy’s Savannah River Site in South Carolina that can eliminate months from the job of radioactive tank waste sampling.
Richard E. Turley
Nuclear Science and Engineering | Volume 30 | Number 2 | November 1967 | Pages 166-175
Technical Paper | doi.org/10.13182/NSE67-A17327
Articles are hosted by Taylor and Francis Online.
This paper presents an operator-type perturbation method which may be used to solve perturbation problems associated with the neutron diffusion equation. The method is related to the hybrid Schrodinger-Heisenberg operator methods used in quantum mechanics. The operators are derived from the variational principles associated with the neutron diffusion equation; therefore, the method includes the advantages of the variational method. Two applications in one-dimensional, one-group diffusion theory are illustrated. The first example illustrates how a plane source of neutrons can be treated as a perturbation. The solution to this problem is exact. In the second example, the solution to a simplified time-independent problem involving fission-product poisoning is presented. The solution to this example is in open form as expected. It is found by way of comparison that this operator method gives a better result in this particular example than the more familiar method of approximating the perturbed solution by an expansion in terms of eigenfunctions of the unperturbed solution.