ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Y. S. Horowitz, M. Moscovitch, J. M. Mack, H. Hsu, E. Kearsley
Nuclear Science and Engineering | Volume 94 | Number 3 | November 1986 | Pages 233-240
Technical Paper | doi.org/10.13182/NSE86-A17266
Articles are hosted by Taylor and Francis Online.
Electron Monte Carlo calculations using CYLTRAN and a new PHSECE (Photon-Produced Secondary Electrons) technique were carried out to estimate electron fluences and energy deposition profiles near LiF/Al and LiF/Pb material interfaces undergoing 60Co gamma irradiation. Several interesting and new features emerge: (a) although the buildup of the secondary electron fluences at the interfaces of the irradiated media is approximately exponential, the value of the electron mass fluence buildup coefficient, γ, is not equal to the electron mass fluence attenuation coefficient, β;(b) the β value of the attenuation of the gamma generated electron fluences at the cavity/medium interfaces is strongly dependent on the Z of the adjacent material; and (c) for LiF/Pb there is a significant “intrusion” energy deposition mode arising from sidescattering in the wall material (lead). These new features of interface dosimetry (at least items a and b) are incorporated into the photon general cavity expressions of Burlin (as modified by Horowitz, Dubi, and Moscovitch) and Kearsley and compared with experimental data.