ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Harry J. Ettinger, William D. Moss, Harold Busey
Nuclear Science and Engineering | Volume 30 | Number 1 | October 1967 | Pages 1-13
Technical Paper | doi.org/10.13182/NSE67-A17237
Articles are hosted by Taylor and Francis Online.
Safety analysis of sodium-cooled plutonium-fueled fast reactor plants must be concerned with the possibility of fires involving these materials. Design of an air cleaning system for such a facility requires basic data defining the aerosol characteristics of sodium and plutonium released during a fire. Size characteristics of the aersol produced during sodium and plutonium fires were determined for different atmospheres ranging from 20.8% oxygen, 79.2% nitrogen to 100% nitrogen. The aerosol produced by burning gram quantities of sodium was compared with that produced by a fire involving 600 lb of sodium. Sodium aerosol count median diameter ranged from 0.07 to 1.09 µ and was independent of oxygen concentration. Small and large scale fires produced an aerosol with comparable size characteristics. Plutonium aerosol count median diameter ranged from 0.02 to 0.09 µ and was also independent of oxygen concentration. When plutonium alloy was burned under reduced oxygen conditions, the fraction airborne ranged from 2. × 10-7 to 4. × 10-6. Fires involving plutonium alloy and sodium together produced airborne plutonium-sodium ratios ranging from 0.34 to 0.008%.