ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Harry J. Ettinger, William D. Moss, Harold Busey
Nuclear Science and Engineering | Volume 30 | Number 1 | October 1967 | Pages 1-13
Technical Paper | doi.org/10.13182/NSE67-A17237
Articles are hosted by Taylor and Francis Online.
Safety analysis of sodium-cooled plutonium-fueled fast reactor plants must be concerned with the possibility of fires involving these materials. Design of an air cleaning system for such a facility requires basic data defining the aerosol characteristics of sodium and plutonium released during a fire. Size characteristics of the aersol produced during sodium and plutonium fires were determined for different atmospheres ranging from 20.8% oxygen, 79.2% nitrogen to 100% nitrogen. The aerosol produced by burning gram quantities of sodium was compared with that produced by a fire involving 600 lb of sodium. Sodium aerosol count median diameter ranged from 0.07 to 1.09 µ and was independent of oxygen concentration. Small and large scale fires produced an aerosol with comparable size characteristics. Plutonium aerosol count median diameter ranged from 0.02 to 0.09 µ and was also independent of oxygen concentration. When plutonium alloy was burned under reduced oxygen conditions, the fraction airborne ranged from 2. × 10-7 to 4. × 10-6. Fires involving plutonium alloy and sodium together produced airborne plutonium-sodium ratios ranging from 0.34 to 0.008%.