ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
P. F. Nichols
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 144-148
Technical Paper | doi.org/10.13182/NSE63-A17219
Articles are hosted by Taylor and Francis Online.
Reactivity measurements have been made in the Physical Constants Testing Reactor (PCTR) on a series of plutonium-aluminum rods with 0.65 in. diam and 31.00 in. long. The samples were contained in a cadmium cover during the measurements. The series of rods consisted of eight sets of two rods each. Two separate batches of plutonium with different isotopic compositions were used in the two rods within a set. The concentrations of plutonium in the alloys were adjusted in such a manner that (1) the two rods within a set differed effectively only in Pu240 content, and (2) the rod with the most Pu240 in one set had the same quantity of Pu240 as the rod with the least Pu240 in an adjacent set. The difference in reactivity measured between the rods in a set is the result of different resonance absorption rates in Pu240 in the two rods. The sensitivity of the reactor to epicadmium absorption in Pu240 was obtained by calibrating the system with three sets of rods that were all very nearly dilute in Pu240 concentration. The experimental data yield effective resonance integrals of Pu240 for the remaining rods relative to the dilute resonance integral. The value of the effective resonance integral for the rod with the highest concentration of Pu240 is a factor of about seven smaller than the dilute integral.