ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
L. E. Beghian, A. E. Profio, J. Weber, S. Wilensky
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 82-90
Technical Paper | doi.org/10.13182/NSE63-A17213
Articles are hosted by Taylor and Francis Online.
Nanosecond bursts of monoenergetic neutrons in the 1 Mev range are injected into various size assemblies of iron. The flux in these assemblies is observed to decay exponentially with characteristic nanosecond decay constants (λ). λ is shown to be composed of a sum of terms which represent loss of neutrons by leakage and through energy degradation by both nonelastic and elastic scattering. The sum of these two last effects can be represented by a total removal cross section which can be determined by measuring λ as a function of assembly size. A theoretical development is given for calculating the contribution to this total cross section due to elastic scattering; hence the total nonelastic cross section can be determined. Nonelastic cross sections for iron have been measured by this technique in the range of primary neutron energies 0.8–1.5 Mev.