ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
What’s in your Dubai chocolate? Nuclear scientists test pistachios for toxins
For the uninitiated, Dubai chocolate is a candy bar filled with pistachio and tahini cream and crispy pastry recently popularized by social media influencers. While it’s easy to dismiss as a viral craze now past its peak, the nutty green confection has spiked global pistachio demand, and growers and processors are ramping up production. That means more pistachios need to be tested for aflatoxins—a byproduct of a common crop mold.
L. E. Beghian, A. E. Profio, J. Weber, S. Wilensky
Nuclear Science and Engineering | Volume 17 | Number 1 | September 1963 | Pages 82-90
Technical Paper | doi.org/10.13182/NSE63-A17213
Articles are hosted by Taylor and Francis Online.
Nanosecond bursts of monoenergetic neutrons in the 1 Mev range are injected into various size assemblies of iron. The flux in these assemblies is observed to decay exponentially with characteristic nanosecond decay constants (λ). λ is shown to be composed of a sum of terms which represent loss of neutrons by leakage and through energy degradation by both nonelastic and elastic scattering. The sum of these two last effects can be represented by a total removal cross section which can be determined by measuring λ as a function of assembly size. A theoretical development is given for calculating the contribution to this total cross section due to elastic scattering; hence the total nonelastic cross section can be determined. Nonelastic cross sections for iron have been measured by this technique in the range of primary neutron energies 0.8–1.5 Mev.