ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Ernest R. Venerus and M. Necati Ozisik
Nuclear Science and Engineering | Volume 26 | Number 1 | September 1966 | Pages 122-130
Technical Paper | doi.org/10.13182/NSE66-A17195
Articles are hosted by Taylor and Francis Online.
Deposition of fission products from an isothermal laminar gas stream to the surfaces of a circular tube is theoretically investigated for a source releasing a radioactive precursor into the gas stream at a uniform rate at the origin. A slug velocity profile is assumed. In solving the partial differential equations of the problem, two different models are examined as boundary conditions to couple the equations. The first model, which is referred to as the Resistance Model, is applicable when the surface concentration of the deposited precursor is small or removal of particles from the surface is negligible; and it is equivalent to assuming a fictitious unknown resistance to mass transfer at the wall surface. The boundary value problem of mass transfer based on the resistance model has been solved for the transient conditions and analytical relations are derived for the concentration of fission products in the gas stream and on the tube surface. In the second model, which is referred to as the Transport Model, a more detailed account is taken of the actual physical transport process in the immediate vicinity of the conduit surface. The removal of precursor from the surface is related to the adsorption energy of the precursor and the temperature of the surface. Removal from the gas stream in the immediate vicinity of the conduit surface is described by a stream removal coefficient which is obtained from the kinetic theory of gases. The boundary value problem based on the transport model has been solved for the steady state condition only. The transport model has been applied to experiments on deposition of radioactive isotopes from laminar gas streams and adsorption energies for some radioactive isotopes are determined. Correlation of the transport model with experiments provides a useful means for obtaining the adsorption energies of radioactive isotopes on metal surfaces.