ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
A. Hébert
Nuclear Science and Engineering | Volume 91 | Number 1 | September 1985 | Pages 34-58
Technical Paper | doi.org/10.13182/NSE85-A17127
Articles are hosted by Taylor and Francis Online.
A number of improvements have been made to the Hermite method in order to obtain a high order finite element method capable of solving the neutron diffusion equation. First, a variational formulation of the equation is used to obtain a Weierstrass-Erdmann-type coupling relation valid at all points in the domain, singular and nonsingular. The basic solution yielded by this type of discretization is obtained by the inverse power method with variational acceleration of outer iterations. The linear systems appearing in the inverse power method are solved using a one-way dissection algorithm followed by asymmetric block factorization. These procedures were programmed in the BIVAC code for a treatment of the neutron diffusion equation with a two-dimensional reactor representation. The Hermite method was then compared with alternative approaches to a solution. The tests correspond to two-dimensional configurations of pressurized water reactors and CANDU reactors.