ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. Hébert
Nuclear Science and Engineering | Volume 91 | Number 1 | September 1985 | Pages 34-58
Technical Paper | doi.org/10.13182/NSE85-A17127
Articles are hosted by Taylor and Francis Online.
A number of improvements have been made to the Hermite method in order to obtain a high order finite element method capable of solving the neutron diffusion equation. First, a variational formulation of the equation is used to obtain a Weierstrass-Erdmann-type coupling relation valid at all points in the domain, singular and nonsingular. The basic solution yielded by this type of discretization is obtained by the inverse power method with variational acceleration of outer iterations. The linear systems appearing in the inverse power method are solved using a one-way dissection algorithm followed by asymmetric block factorization. These procedures were programmed in the BIVAC code for a treatment of the neutron diffusion equation with a two-dimensional reactor representation. The Hermite method was then compared with alternative approaches to a solution. The tests correspond to two-dimensional configurations of pressurized water reactors and CANDU reactors.