ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
A. Hébert
Nuclear Science and Engineering | Volume 91 | Number 1 | September 1985 | Pages 34-58
Technical Paper | doi.org/10.13182/NSE85-A17127
Articles are hosted by Taylor and Francis Online.
A number of improvements have been made to the Hermite method in order to obtain a high order finite element method capable of solving the neutron diffusion equation. First, a variational formulation of the equation is used to obtain a Weierstrass-Erdmann-type coupling relation valid at all points in the domain, singular and nonsingular. The basic solution yielded by this type of discretization is obtained by the inverse power method with variational acceleration of outer iterations. The linear systems appearing in the inverse power method are solved using a one-way dissection algorithm followed by asymmetric block factorization. These procedures were programmed in the BIVAC code for a treatment of the neutron diffusion equation with a two-dimensional reactor representation. The Hermite method was then compared with alternative approaches to a solution. The tests correspond to two-dimensional configurations of pressurized water reactors and CANDU reactors.