ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
E. M. O blow, F. G. Pin, R. Q. Wright
Nuclear Science and Engineering | Volume 94 | Number 1 | September 1986 | Pages 46-65
Technical Paper | doi.org/10.13182/NSE86-A17116
Articles are hosted by Taylor and Francis Online.
An automated procedure for performing large-scale sensitivity studies based on the use of computer calculus is presented. The procedure is embodied in a FORTRAN precompiler called GRESS, which automatically processes computer models adding derivative-taking capabilities to the normal calculated results. The theory and applicability of the GRESS code are described and tested against a major geohydrological modeling problem. The SWENT nuclear waste repository modeling code is used as the basis for these studies. Results for a test problem involving groundwater flow in the vicinity of the Richton Salt Dome are discussed in detail. Sensitivity results are compared with analytical, perturbation, and alternate sensitivity approaches to the problem. Five-place accuracy in these sensitivity results is verified for all cases in which the effects of nonlinearities are made sufficiently small. Conclusions are drawn as to the applicability of GRESS in the problem studied and for more general large-scale modeling sensitivity studies.