ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Emily R. Wolters, Edward W. Larsen, William R. Martin
Nuclear Science and Engineering | Volume 174 | Number 3 | July 2013 | Pages 286-299
Technical Paper | doi.org/10.13182/NSE12-72
Articles are hosted by Taylor and Francis Online.
In this paper, two modifications to improve the efficiency of Lee et al.'s recently proposed “CMFD [coarse-mesh finite difference]-accelerated Monte Carlo” method for neutron criticality problems are presented and tested. This CMFD method employs standard Monte Carlo techniques to estimate nonlinear functionals (ratios of integrals), which are used in low-order CMFD equations to obtain the eigenvalue and discrete representations of the eigenfunction. In a “feedback” procedure, the Monte Carlo fission source is then modified to match the resulting CMFD fission source. The proposed new methods differ from the CMFD-accelerated Monte Carlo method only in the definition of the nonlinear functionals. The new methods are compared with the CMFD-accelerated Monte Carlo method for two high-dominance-ratio test problems. All of the hybrid methods rapidly converge the Monte Carlo fission source, enabling a large reduction in the number of inactive cycles. However, the new methods stabilize the fission source more efficiently than the CMFD-accelerated Monte Carlo method, enabling a reduction in the number of active cycles as well. Also, in all the hybrid methods, the apparent variance of the eigenfunction is nearly equal to the real variance, so the real statistical error is well estimated from a single calculation. This is a major advantage over the standard Monte Carlo method, in which the real variance is typically underestimated due to intercycle correlations.