ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Xcel Energy reports on tritium levels in well near Mississippi River
Recent testing of a monitoring well in Minnesota near the Mississippi River detected tritium levels just below the safety standards set by the Environmental Protection Agency, Xcel Energy reported this week.
Brian C. Kiedrowski, Forrest B. Brown
Nuclear Science and Engineering | Volume 174 | Number 3 | July 2013 | Pages 227-244
Technical Paper | doi.org/10.13182/NSE12-46
Articles are hosted by Taylor and Francis Online.
A continuous-energy Monte Carlo method is developed to compute adjoint-based k-eigenvalue sensitivity coefficients with respect to nuclear data. The method is implemented into MCNP6 and is based upon similar methodologies used to compute other adjoint-weighted quantities. The Monte Carlo tallies employed are explained. Verification of the method is performed by comparing results to analytic solutions, direct density perturbations, and those from other software packages such as TSUNAMI-3D and MONK. Results of analytic solutions agree within a few tenths of a percent. Direct density perturbations and comparisons with other software generally agree within a few percent.