ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Iskender Atilla Reyhancan, Ayse Durusoy
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 202-207
Technical Paper | doi.org/10.13182/NSE11-96
Articles are hosted by Taylor and Francis Online.
In this study, the activation cross sections were, first, measured for the 144Sm(n,)141mNd reaction at six different neutron energies from 13.57 to 14.83 MeV. The fast neutrons were produced by using a neutron generator, through the 3H(2H,n)4He reaction. The cyclic activation technique was used as the irradiation and counting method. Induced gamma activities were measured using a high-resolution gamma-ray spectrometer equipped with a high-purity germanium detector. In the cross-section measurements, corrections were made regarding the effects of gamma-ray attenuation, dead time, fluctuation of neutron flux, and low-energy neutrons. The measured cross sections were compared with the results of model calculations (TALYS code).