ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
April 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear materials testing project brings U.S. and U.K. expertise together
As nations look to nuclear energy as a source of reliable electricity and heat, researchers and industry are developing a new generation of nuclear reactors to fill the need. These advanced nuclear reactors will provide safe, efficient, and economical power that go beyond what the current large light water reactors can do.
But before large-scale deployment of advanced reactors, researchers need to understand and test the safety and performance of the technologies—especially the coolants and materials—that make them possible.
Now, the United States and the United Kingdom have teamed up to test hundreds of advanced nuclear materials.
D. P. Barry, G. Leinweber, R. C. Block, T. J. Donovan, Y. Danon, F. J. Saglime, A. M. Daskalakis, M. J. Rapp, R. M. Bahran
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 188-201
Technical Paper | doi.org/10.13182/NSE12-1
Articles are hosted by Taylor and Francis Online.
High-energy-neutron-scattering experiments for elemental zirconium were performed at the electron linear accelerator facility at Rensselaer Polytechnic Institute. The scattering experiments were performed in the energy region from 0.5 to 20 MeV using the time-of-flight technique. The scattering system is composed of an array of eight EJ301 liquid scintillator detectors coupled to photomultiplier tubes. The detector array collects data simultaneously at various angles. The raw signals from each detector were digitized and transferred to a personal computer hard drive for storage. The digitized data were postprocessed, and pulse-shape analysis was performed to determine whether the pulse was the result of a gamma ray or a neutron being detected. The experimental results were compared with Monte Carlo transport calculations that simulated the experiment. This comparison was a way to benchmark several nuclear data libraries used in the Monte Carlo code. Ratios of the calculated data to the experimental data (C/E values) are presented and used to compare the nuclear data libraries. Results show that the experimentally observed scattering cross section is smaller than the one used in the evaluated libraries at energies between 10 and 20 MeV. For all energies and angles, the investigated nuclear data libraries agree with the experimental data to within 9%. Overall, the JEFF-3.1 and JENDL-4.0 libraries provide the best match to the experimental data.