ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hanford teams prepare for first tank waste transfer
The Department of Energy’s Office of Environmental Management said that crews at its Hanford Site in Washington state are preparing for the site’s first-ever transfer of radioactive waste from one of its large underground tanks, Tank AP-106, to the Waste Treatment and Immobilization Plant (WTP).
M. M. R. Williams
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 172-178
Technical Paper | doi.org/10.13182/NSE12-45
Articles are hosted by Taylor and Francis Online.
A new approach is developed for solving stochastic eigenvalue problems that arise when uncertainty is present in the cross-section data in a critical assembly. The method has been shown to agree with values obtained from a direct quadrature. The new approach, which uses a polynomial chaos expansion (PCE), does not involve the nonlinear equations associated with the classical method of PCE, but rather a linear equation obtained by considering an equivalent time-dependent problem; it therefore leads to much simpler calculational procedures. The convergence of the method is rapid, and it is illustrated by numerical examples based upon a criticality problem and also by comparison with a problem that uses the nonlinear method.