ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
M. R. Hartman, S. T. Keller, S. R. Reese, B. Robinson, J. Stevens, J. E. Matos, W. R. Marcum, T. S. Palmer, B. G. Woods
Nuclear Science and Engineering | Volume 174 | Number 2 | June 2013 | Pages 135-149
Technical Paper | doi.org/10.13182/NSE12-5
Articles are hosted by Taylor and Francis Online.
In support of the conversion of the Oregon State TRIGA Reactor (OSTR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel, a comprehensive neutronic analysis utilizing MCNP5 was performed on the HEU and LEU core configurations. The initial 1974 HEU core provided an opportunity for verification of the MCNP5 baseline model; all fuel elements in the initial core were congruent in geometry and material composition, having no burnup. In addition, a substantial database of core parameters was documented during the initial HEU core start-up. This verification study examined control rod worth, core excess reactivity, burnup, core power, power per element, temperature coefficient of reactivity, void coefficient of reactivity, moderator coefficient of reactivity, axial and radial power profiles, prompt-neutron lifetime, effective delayed-neutron fraction, power defect, and xenon poisoning.Fuel material composition and core loadings are presented. The excellent comparison between the numerical results and the experimental data of the initial HEU core established an objective, credible baseline model and methodology, which were then extended to the LEU core neutronic analysis. Comparison between the numerically calculated core physics values for the new LEU core and data collected during start-up provided a complete verification that the MCNP5 models developed for both the HEU and LEU cores were representative of the OSTR.