ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
David Regnier, Olivier Litaize, Olivier Serot
Nuclear Science and Engineering | Volume 174 | Number 1 | May 2013 | Pages 103-108
Technical Note | doi.org/10.13182/NSE12-12
Articles are hosted by Taylor and Francis Online.
The average total prompt neutron multiplicity [nu with overbar] of 252Cf spontaneous fission is investigated as a function of the total kinetic energy TKE and the mass split of the fragments through the code FIFRELIN. This Monte Carlo device, already described in a previous work, aims at simulating the neutron evaporation from fission fragments. The observables and TKE and the light fragment mass AL are recorded from a sample of 107 fission events. The analyzed results show a value for the inverse of the slope [[partial differential][nu with overbar](TKE)/[partial differential]TKE]-1 equal to -11.0 MeV/n. In addition to this, the average number of neutrons per fission [nu with overbar](TKE, AL) is determined for every possible TKE and AL. For every fragment mass ratio, differences in behavior between [nu with overbar](TKE, AL) versus TKE and [nu with overbar](TKE) with no discrimination made with regard to AL are observed. Those differences are explained by the TKE dependency of fission yield. The approximation consisting of ignoring this TKE dependency of mass yield when calculating the [nu with overbar](TKE) slope is discussed. We estimate that such a calculation could lead to a significant bias on the absolute value of [partial differential][nu with overbar](TKE)/[partial differential]TKE and could explain the discrepancies between calculations found in the literature.