ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
November 2024
Nuclear Technology
Fusion Science and Technology
Latest News
Remembering ANS President John Kelly
John Kelly, ANS past president (2018–19 ), passed away peacefully in his sleep on October 3, 2024, in Gilbert Ariz., at the age of 70. Kelly was born on March 9, 1954, and was the eldest of Jack and Aileen Kelly’s six children.
His career, which spanned more than 40 years, began at Sandia National Laboratories in Albuquerque, N.M., where he focused on safety and severe accident analysis. His leadership led him to Washington D.C., where he served as the deputy assistant secretary for nuclear reactor technologies at the U.S. Department of Energy. Kelly played a critical role in shaping nuclear policy and guiding the world through significant events, including the Fukushima Daiichi accident in Japan. At the end of his career, he was honored to serve as the American Nuclear Society’s president. In retirement, he was actively involved with ANS in technology events and mentoring the next generation of scientists.
Kelly is survived by his wife, Suzanne; his children Julie Kelly-Smith (Byron), John A. (Sarah), and Michael (Nicole); and grandchildren Kiri and Kyson Smith and John and Maximilian Kelly. His family was his pride and joy, including his cherished dog, Covie, who brought him happiness in recent years.
In lieu of flowers, donations may be made to the American Nuclear Society or Detroit Catholic Central High School (27225 Wixom Road, Novi, MI 48374). Please designate Memorial and specify John Kelly ’72 Memorial Fund.
In honor of Kelly's commitment to ANS and to celebrate his life, his profile from the July 2018 issue of Nuclear News is published below.
David Regnier, Olivier Litaize, Olivier Serot
Nuclear Science and Engineering | Volume 174 | Number 1 | May 2013 | Pages 103-108
Technical Note | doi.org/10.13182/NSE12-12
Articles are hosted by Taylor and Francis Online.
The average total prompt neutron multiplicity [nu with overbar] of 252Cf spontaneous fission is investigated as a function of the total kinetic energy TKE and the mass split of the fragments through the code FIFRELIN. This Monte Carlo device, already described in a previous work, aims at simulating the neutron evaporation from fission fragments. The observables and TKE and the light fragment mass AL are recorded from a sample of 107 fission events. The analyzed results show a value for the inverse of the slope [[partial differential][nu with overbar](TKE)/[partial differential]TKE]-1 equal to -11.0 MeV/n. In addition to this, the average number of neutrons per fission [nu with overbar](TKE, AL) is determined for every possible TKE and AL. For every fragment mass ratio, differences in behavior between [nu with overbar](TKE, AL) versus TKE and [nu with overbar](TKE) with no discrimination made with regard to AL are observed. Those differences are explained by the TKE dependency of fission yield. The approximation consisting of ignoring this TKE dependency of mass yield when calculating the [nu with overbar](TKE) slope is discussed. We estimate that such a calculation could lead to a significant bias on the absolute value of [partial differential][nu with overbar](TKE)/[partial differential]TKE and could explain the discrepancies between calculations found in the literature.