ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
K. D. Lathrop
Nuclear Science and Engineering | Volume 24 | Number 4 | April 1966 | Pages 381-388
Technical Paper | doi.org/10.13182/NSE66-A16408
Articles are hosted by Taylor and Francis Online.
To permit numerical solution of photon transport problems by the method of discrete ordinates, an anisotropic scattering approximation and a multigroup cross-section preparation recipe are selected. The incorporation of the anisotropic scattering approximation in a discrete-ordinates transport-theory code is described. Results of discrete-ordinates calculations are compared to Monte Carlo and moments-methods computations in three test problems. Flux values and leakage percentages in the different methods of solution are found to be in excellent agreement, even when a relatively low-order (four or six terms of a Legendre polynomial expansion) anisotropic scattering approximation is used in the discrete-ordinates method. In the test problems considered, the discrete-ordinates method is (computationally) nearly an order of magnitude faster than the other methods.