ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
J. Helholtz, W. Rothenstein
Nuclear Science and Engineering | Volume 24 | Number 4 | April 1966 | Pages 349-355
Technical Paper | doi.org/10.13182/NSE66-A16404
Articles are hosted by Taylor and Francis Online.
A multigroup procedure for the calculation of the fast fission phenomena in thermal uranium-water reactors has been developed. The method essentially consists of applying the single-flight collision concept in a manner analogous to the calculation of resonance capture in thermal reactor lattices. The collision and escape probabilities are calculated by numerical integration over the actual neutron paths encountered in a reactor lattice. The multigroup equations are solved by an iterative procedure which converges rapidly. The fast neutron spectrum, &dgr;28 and &hexadecimal; can be obtained. Results of calculations are presented in which the value of &dgr;28 homogeneous uranium-water mixtures and for slightly-enriched uranium-water lattices are compared with Monte Carlo calculations and experiment. Very satisfactory agreement has been obtained. Fast neutron spectra in the core of a pool type reactor and in the fuel and moderator regions of a uranium-water lattice, calculated by the present method, are also shown.