ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Work advances on X-energy’s TRISO fuel fabrication facility
Small modular reactor developer X-energy, together with its fuel-developing subsidiary TRISO-X, has selected Clark Construction Group to finish the building construction phase of its advanced nuclear fuel fabrication facility, known as TX-1, in Oak Ridge, Tenn. It will be the first of two Oak Ridge facilities built to manufacture the company’s TRISO fuel for use in its Xe-100 SMR. The initial deployment of the Xe-100 will be at Dow Chemical Company’s UCC Seadrift Operations manufacturing site on Texas’s Gulf Coast.
F. Storrer, P. Govaerts, F. Ebersoldt, P. Hammer
Nuclear Science and Engineering | Volume 24 | Number 4 | April 1966 | Pages 344-348
Technical Paper | doi.org/10.13182/NSE66-A16403
Articles are hosted by Taylor and Francis Online.
A unified formalism is presented, which is applicable to a wide class of problems related to fast-neutron multiplying systems. Such problems are the search for asymptotic and transient space-energy modes in fast reactors and exponential or wave experiments and the analysis of pulsed or modulated bare systems. This formulation is based on the use of a Laplace transformation with respect to time and of a Fourier transformation with respect to space. It is greatly simplified, if it is assumed that the fission spectrum is independent of the energy of the incident neutron and of the nuclide that underwent fission. This assumption, which does not affect the results appreciably, makes it possible to describe the whole neutronic process in terms of a single scalar variable, the fission neutron source, (instead of the energy-dependent flux) without any loss of information. Furthermore, the solution can be found by convolutions over the neutronic processes between successive generations of fissions, which involve only simple slowing-down kernels.