ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
DTE Energy studying uprate at Fermi-2, considers Fermi-3’s prospects
DTE Energy, the owner of Fermi nuclear power plant in Michigan, is considering an extended uprate for Unit 2 that would increase its 1,100-MW generation capacity by 150 MW.
F. Storrer, P. Govaerts, F. Ebersoldt, P. Hammer
Nuclear Science and Engineering | Volume 24 | Number 4 | April 1966 | Pages 344-348
Technical Paper | doi.org/10.13182/NSE66-A16403
Articles are hosted by Taylor and Francis Online.
A unified formalism is presented, which is applicable to a wide class of problems related to fast-neutron multiplying systems. Such problems are the search for asymptotic and transient space-energy modes in fast reactors and exponential or wave experiments and the analysis of pulsed or modulated bare systems. This formulation is based on the use of a Laplace transformation with respect to time and of a Fourier transformation with respect to space. It is greatly simplified, if it is assumed that the fission spectrum is independent of the energy of the incident neutron and of the nuclide that underwent fission. This assumption, which does not affect the results appreciably, makes it possible to describe the whole neutronic process in terms of a single scalar variable, the fission neutron source, (instead of the energy-dependent flux) without any loss of information. Furthermore, the solution can be found by convolutions over the neutronic processes between successive generations of fissions, which involve only simple slowing-down kernels.