ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
W. C. Waggener, A. J. Weinberger, R. W. Stoughton
Nuclear Science and Engineering | Volume 24 | Number 4 | April 1966 | Pages 336-343
Technical Paper | doi.org/10.13182/NSE66-A16402
Articles are hosted by Taylor and Francis Online.
Aqueous homogeneous reactor fuel solutions have been examined spectrophotometrically in the wavelength range 0.3 to 1.2µ as a function of time, temperature, and overpressures of hydrogen and/or oxygen. Using a cell that was designed for liquid-gas equilibration, and which were slightly catalytic for the recombination of hydrogen and oxygen, the course of reactions (reduction, hydrolysis, precipitation, oxidation, and re-solution) of uranium and copper were followed concomitantly. Degassed solutions of the UO2SO4-CuSO4-D2SO4-D2 O-H2O system lost uranium and copper very slowly above 200°C. In the presence of hydrogen, Cu(II) and U(VI) were reduced consecutively to Cu (metal) and to U(IV) species that were partially soluble at 25°C, but insoluble above 150 to 200°C. The changing spectrum was generally uncomplicated by turbidity, since reduction of Cu(II), as well as aggregation of U(IV) hydrolytic species, occurred at the cell wall. Hydrolysis of U(IV) was slowly reversible with decreasing temperature. Reoxidation of reduced solution with oxygen was comparatively rapid and complete at all temperatures.