ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
George H. Miley
Nuclear Science and Engineering | Volume 24 | Number 4 | April 1966 | Pages 322-331
Technical Paper | doi.org/10.13182/NSE66-A16400
Articles are hosted by Taylor and Francis Online.
An analysis of a parallel-plate UO2-fueled Fission Electric Cell is developed that includes a detailed treatment of the fission-fragment initial-energy spectrum, energy-charge loss during slowing, and energy dependence of the total range. The treatment of fragment transport is based, as much as possible, on correlations of experimental data. However, available data are skimpy, and several discrepancies, e.g., between available differential and integral energy-loss data, are noted. The importance of an accurate fragment transport model is demonstrated by the differences in efficiencies obtained from this detailed treatment, as opposed to earlier calculations that used simpler models, e.g., relative differences between models of as much as 15 and 80% are attributed to the treatment of the fragment charge and energy loss, respectively. The calculations are also shown to be fairly sensitive to the total-range-mass correlation, but only weakly dependent on the choice of the initial fragment charge. While efficiencies for the parallel-plate cell with reasonable fuel-layer thickness are found to range from 2 to 10%, efficiencies for cylindrical or spherical geometry may be 5 to 6 times this, and the concept may be competitive for certain specialized applications.