ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Growing the nuclear talent in Texas
The University of Texas–Austin has released a report, Cultivating Homegrown Nuclear Talent in Texas: Workforce Development Recommendations for Advanced Nuclear Development, which emphasizes general actions needed for the state to meet the near-term demand for workers in the nuclear industry.
Alireza Sedaghat, Robert Macduff, Frank Castellana
Nuclear Science and Engineering | Volume 96 | Number 3 | July 1987 | Pages 253-259
Technical Note | doi.org/10.13182/NSE87-A16386
Articles are hosted by Taylor and Francis Online.
The effect of a mixing vane was studied in a three-subchannel geometry for a 3.99-mm (0.157-in.) gap space, and for mass velocities of 339.0, 678.1, and 1356.2 kg/s⋅m2 (0.25, 0.50, and 1.0 Mlb/h⋅ft2, respectively). Mixing rates increased rapidly downstream of the vane and then decreased gradually as a function of downstream distance. The maximum increase in turbulent cross-flow for a mass velocity of 339.0 kg/s⋅m2 occurred ∼10 hydraulic diameters from the end of the mixing vane and was 150% greater than the value observed at comparable conditions for the same test section without a mixing vane. The average increase in mixing due to the presence of the vane was ∼58%.