ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Kohtaro Ueki, Yoshihito Namito
Nuclear Science and Engineering | Volume 96 | Number 1 | May 1987 | Pages 30-38
Technical Paper | doi.org/10.13182/NSE87-A16361
Articles are hosted by Taylor and Francis Online.
Integral shielding experiments using iron-polyethylene slab shields were carried out to determine an optimum arrangement for the neutron dose rate. The total thickness of the iron slabs was fixed at 32 cm, while several thicknesses of polyethylene slabs were employed as a parameter. Some measured data were analyzed by the Monte Carlo code MORSE-CG with the splitting technique. Depending on the location of the polyethylene slab, the measured neutron dose rates changed remarkably in the iron-polyethylene shielding system. When the polyethylene slab was 1 cm thick, the ratio of the maximum neutron dose rate to the minimum value was 1.3, and the ratio was increased to as much as 5.4 for the 14-cm-thick polyethylene slab. The minimum dose point (i.e., optimum shielding arrangement) was observed when the polyethylene slab was located near the detector with the iron slab placed near the neutron source. This was also demonstrated by the Monte Carlo calculations.