ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Allan B. Wollaber, Edward W. Larsen, Jeffery D. Densmore
Nuclear Science and Engineering | Volume 173 | Number 3 | March 2013 | Pages 259-275
Technical Paper | doi.org/10.13182/NSE11-101
Articles are hosted by Taylor and Francis Online.
It is well known that temperature solutions of the Implicit Monte Carlo (IMC) equations can exceed the external boundary temperatures, a violation of the “maximum principle.” Previous attempts to prescribe a maximum value of the time-step size Δt that is sufficient to eliminate these violations have recommended a Δt that is typically too small to be used in practice and that appeared to be much too conservative when compared to the actual Δt required to prevent maximum principle violations in numerical solutions of the IMC equations. In this paper we derive a new, approximate estimator for the maximum time-step size that includes the spatial-grid size Δx of the temperature field. We also provide exact necessary and sufficient conditions on the maximum time-step size that are easier to calculate. These explicitly demonstrate that the effect of coarsening Δx is to reduce the limitation on Δt. This helps explain the overly conservative nature of the earlier, grid-independent results. We demonstrate that the new time-step restriction is a much more accurate predictor of violations of the maximum principle. We discuss how the implications of the new, grid-dependent time-step restriction can affect IMC solution algorithms.