ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
E. E. Lewis, Yunzhao Li, M. A. Smith, W. S. Yang, Allan B. Wollaber
Nuclear Science and Engineering | Volume 173 | Number 3 | March 2013 | Pages 222-232
Technical Paper | doi.org/10.13182/NSE11-106
Articles are hosted by Taylor and Francis Online.
Multigrid-preconditioned Krylov methods are applied to within-group response matrix equations of the type derived from the variational nodal method for neutron transport with interface conditions represented by orthogonal polynomials in space and spherical harmonics in angle. Since response matrix equations result in nonsymmetric coefficient matrices, the generalized minimal residual (GMRES) Krylov method is employed. Two acceleration methods are employed: response matrix aggregation and multigrid preconditioning. Without approximation, response matrix aggregation combines fine-mesh response matrices into coarse-mesh response matrices with piecewise-orthogonal polynomial interface conditions; this may also be viewed as a form of nonoverlapping domain decomposition on the coarse grid. Two-level multigrid preconditioning is also applied to the GMRES method by performing auxiliary iterations with one degree of freedom per interface that conserve neutron balance for three types of interface conditions: (a) p preconditioning is applied to orthogonal polynomial interface conditions (in conjunction with matrix aggregation), (b) h preconditioning to piecewise-constant interface conditions, and (c) h-p preconditioning to piecewise-orthogonal polynomial interface conditions. Alternately, aggregation is employed outside the GMRES algorithm to coarsen the grid, and multigrid preconditioning is then applied to the coarsened equations. The effectiveness of the combined aggregation and preconditioning techniques is demonstrated in two dimensions on a fixed-source, within-group neutron diffusion problem approximating the fast group of a pressurized water reactor configuration containing six fuel assemblies.