ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Can AI deliver nuclear on time and on budget? These companies think so.
AI for energy, and energy for AI: that is the new refrain. But can nuclear power plants be deployed at the pace needed for substantial and timely contributions to the energy infrastructure? For Westinghouse, delivering its AP1000 on time and on budget in the United States is a challenge not yet accomplished, while newcomers like Aalo Atomics are turning to AI to speed design, permitting, and construction.
Scott D. Ramsey, Gregory J. Hutchens
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 197-205
Technical Note | doi.org/10.13182/NSE11-34
Articles are hosted by Taylor and Francis Online.
A quantity that is frequently of interest in stochastic neutronics calculations is the probability of extinction (POE), or its complement, the survival probability. Even within the simplest stochastic point kinetics formulations, the POE is typically extracted from numerical calculations or approximated. An example of the latter strategy involves the truncation of the fission multiplicity distribution at two, resulting in the “quadratic approximation.” While this methodology yields closed-form results for the POE, it is valid only for supercritical multiplication near unity. In this technical note, we attempt to obviate fission multiplicity truncation in the construction of transient and infinite time limit closed-form POE solutions. In the infinite time limit, we arrive at the necessity of solving a quintic algebraic equation; we provide a brief discussion of the mature formalism available for solving quintic equations and generate a variety of simple representations using hypergeometric series. We evaluate and discuss both the new and existing approximations in the context of an example 235U system and compare their validity over a range of supercritical multiplication factors.