ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Scott D. Ramsey, Gregory J. Hutchens
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 197-205
Technical Note | doi.org/10.13182/NSE11-34
Articles are hosted by Taylor and Francis Online.
A quantity that is frequently of interest in stochastic neutronics calculations is the probability of extinction (POE), or its complement, the survival probability. Even within the simplest stochastic point kinetics formulations, the POE is typically extracted from numerical calculations or approximated. An example of the latter strategy involves the truncation of the fission multiplicity distribution at two, resulting in the “quadratic approximation.” While this methodology yields closed-form results for the POE, it is valid only for supercritical multiplication near unity. In this technical note, we attempt to obviate fission multiplicity truncation in the construction of transient and infinite time limit closed-form POE solutions. In the infinite time limit, we arrive at the necessity of solving a quintic algebraic equation; we provide a brief discussion of the mature formalism available for solving quintic equations and generate a variety of simple representations using hypergeometric series. We evaluate and discuss both the new and existing approximations in the context of an example 235U system and compare their validity over a range of supercritical multiplication factors.