ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Tsung-Kuang Yeh, Mei-Ya Wang
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 163-171
Technical Paper | doi.org/10.13182/NSE11-85
Articles are hosted by Taylor and Francis Online.
The coolant in a boiling water reactor (BWR) during a cold shutdown usually contains a relatively high level of dissolved oxygen from intrusion of atmospheric air. Accordingly, the structural materials in the primary coolant circuit (PCC) of a BWR could be exposed to a strongly oxidizing environment for a short period of time during a subsequent startup operation. Because there are limited measurable water chemistry data, a well-developed computer code DEMACE was used in the current study to investigate the variations in redox species concentration and in electrochemical corrosion potential (ECP) of components in the PCC of a domestic BWR during startup operations. Our analyses indicated that the dissolved hydrogen level in the reactor coolant at a low power level without steam generation in the core was lower than that at a power level with a minor amount of steam generated in the core. The dissolved oxygen concentrations in the reactor coolant were relatively high and were >500 ppb during startup operations at power levels >2.5%. In the meantime, the concentrations of hydrogen peroxide could be >500 ppb at the core outlet region during startup operations, which renders a strongly oxidizing coolant environment in the entire PCC. The ECPs of structural components in the PCC of the analyzed BWR generally followed the concentration trend of hydrogen peroxide. It was predicted that the coolant environment in a BWR during a plant startup could be highly oxidizing, and the structural components would therefore suffer from a more serious corrosion problem than under operations at the rated power level.