ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yanheng Li, Wei Ji
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 150-162
Technical Paper | doi.org/10.13182/NSE12-13
Articles are hosted by Taylor and Francis Online.
In pebble bed reactors (PBRs), pebble flow and coolant flow are highly correlated, and the behavior of each flow is strongly influenced by pebble-coolant interactions. Simulation of both flows in PBRs presents a multiphysics computational challenge because of the strong interplay between the flows. In this paper, a fully coupled multiphysics model is developed and applied to analyze the pebble flow and coolant flow in helium gas-cooled and fluoride salt-cooled PBR designs. A discrete element method is used to simulate the pebble motion to obtain the distribution of pebble density and velocity and the maximum contact stress on each pebble. Computational fluid dynamics is employed to simulate coolant dynamics to obtain the distribution of coolant velocity and pressure. The two methods are fully coupled through the calculation and exchange of pebble-coolant interactions at each time step. Thus, a fully coupled multiphysics computational framework is formulated. A scaled experimental fluoride salt-cooled reactor facility and a full-core helium gas-cooled HTR-10 reactor are simulated. Noticeable changes, such as higher pebble density in the cylindrical core region and more uniform vertical fluid speed profile due to the coupling effect, are observed compared to previous single-phase simulations alone without coupling. These changes suggest that the developed computational framework has higher fidelity compared with previous uncoupled methodology in analyzing pebble flow in PBRs. For the scaled experimental fluorite salt-cooled reactor facility calculation, similar hydraulic loss can be obtained as measured in the University of California, Berkeley, Pebble Recirculation Experiment (PREX), demonstrating the potential of the developed method in thermal-hydraulic analysis for PBRs.