ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Koichi Okuno, Hideaki Matsue, Satoru Miyata, Yoshiaki Kiyanagi
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 139-149
Technical Paper | doi.org/10.13182/NSE12-15
Articles are hosted by Taylor and Francis Online.
Trace element analysis using instrumental neutron activation analysis for neutron shield concrete made from colemanite and peridotite rocks is carried out. Also, an activation estimation for the concrete wall in the accelerator neutron source facility is calculated using the obtained element data. The results show that the amount of short-half-life nuclide production in the neutron shield concrete is ˜1/100 that of limestone concrete and also that the amount of 60Co production is 1/5 to 1/8 that of limestone concrete. From these results, the activation property of the neutron shield concrete was found to be much less than that of the limestone concrete, which has been previously reported as having low activation.