ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Ser Gi Hong
Nuclear Science and Engineering | Volume 173 | Number 2 | February 2013 | Pages 101-117
Technical Paper | doi.org/10.13182/NSE11-38
Articles are hosted by Taylor and Francis Online.
In this paper, two new subcell balance methods for solving the multigroup discrete ordinates transport equation in unstructured geometrical problems are presented. The problem domains are divided into tetrahedral meshes to model the complicated geometries. In these new methods, the angular flux and its flux moments are approximated with the four-term linear discontinuous expansion, and then, the unknowns (four point fluxes or subcell average fluxes) and the interface fluxes are represented in terms of the expansion coefficients. Finally, the external and internal interface average fluxes are represented in terms of the unknown fluxes, and the subcell balance equations give the complete relations associated with the unknown fluxes.Two ways for dividing a tetrahedral mesh into subcells are considered, and they lead to the new methods. The first subcell balance method, called LDEM-SCB(0), is relatively simple, and the second subcell balance method, called LDEM-SCB(1), is more complicated than LDEM-SCB(0). The point flux formulations of these methods can be easily implemented with minor modifications in the discontinuous finite element method codes. The numerical tests show that the new subcell balance methods provide accurate and robust solutions. In particular, the numerical analysis shows that LDEM-SCB(0) and LDEM-SCB(1) have first- and second-order accuracies, respectively, in the transport regime. Also, it was found from the asymptotic analysis that these methods satisfy the linear continuous diffusion discretizations on the interior in the thick diffusion limit.