ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Can AI deliver nuclear on time and on budget? These companies think so.
AI for energy, and energy for AI: that is the new refrain. But can nuclear power plants be deployed at the pace needed for substantial and timely contributions to the energy infrastructure? For Westinghouse, delivering its AP1000 on time and on budget in the United States is a challenge not yet accomplished, while newcomers like Aalo Atomics are turning to AI to speed design, permitting, and construction.
Günyaz Ablay, Tunc Aldemir
Nuclear Science and Engineering | Volume 173 | Number 1 | January 2013 | Pages 82-98
Technical Paper | doi.org/10.13182/NSE11-43
Articles are hosted by Taylor and Francis Online.
The use of sliding mode observers as a model-based method is proposed for robust fault detection and isolation in linear and nonlinear nuclear systems. A sliding mode output observer and a sliding mode state observer are designed and applied to a U-tube steam generator model, a coupled nonlinear reactor model, and a pressurizer model to detect additive and multiplicative faults in the presence of uncertainties and measurement noise. Numerical results for both steady-state and transient responses of the example systems are presented to illustrate the effectiveness of the proposed method.