ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Jeremy A. Roberts, Bradley T. Rearden, Paul P. H. Wilson
Nuclear Science and Engineering | Volume 173 | Number 1 | January 2013 | Pages 43-57
Technical Paper | doi.org/10.13182/NSE10-109
Articles are hosted by Taylor and Francis Online.
This paper presents a method for determining partial biases and bias uncertainties for application in fission product burnup credit criticality safety analysis. The contribution of each nuclide to the overall system keff bias and the bias uncertainty are determined via the generalized linear least squares method. Where experimental benchmarks are available to validate specific nuclides, sensitivity and uncertainty analysis is used to project biases observed in the benchmarks to biases appropriate for the safety system. Two weighting schemes are proposed to produce an overall bias in the safety system from several single partial biases. Finally, these methods are used to determine partial biases for 149Sm and 103Rh from two experiment series and to apply these biases to a representative used fuel safety system. The biases obtained are compared to bounding estimates, and the sensitivity of the results to relevant assumptions is addressed.