ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
R. H. Chen, M. L. Corradini, G. H. Su, S. Z. Qiu
Nuclear Science and Engineering | Volume 173 | Number 1 | January 2013 | Pages 1-14
Technical Paper | doi.org/10.13182/NSE12-10
Articles are hosted by Taylor and Francis Online.
A molten fuel breakup model that considers solidification effects is proposed in this paper. Both the effect of a solid crust layer and the effect of thermal stresses on the fuel particle fragmentation are taken into account in this model. This solidification model predicts the transient temperature profile and crust layer thickness of the fuel particle by numerically solving the Fourier heat conduction equation under specific initial and boundary conditions. This fuel particle breakup model and transient temperature profile model were incorporated into the TEXAS fuel-coolant interaction (FCI) model; this revised TEXAS FCI model is called TEXAS-VI. This paper compares TEXAS-VI to the FARO L14 experiment (FARO L14), for which fuel-coolant mixing and quench data have been published. The FARO L14 pressure history, liquid water pool temperature, and vapor temperature were found to be in good agreement with the revised model predictions. This mixing behavior will also have an impact on FCI explosion energetics. The solidification effect is under investigation for energetics.