ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Kazuyoshi Miki, Kotaro Inoue
Nuclear Science and Engineering | Volume 59 | Number 2 | February 1976 | Pages 161-169
Technical Paper | doi.org/10.13182/NSE76-A15686
Articles are hosted by Taylor and Francis Online.
A new calculation code, the Hot Spot Probabilistic Evaluation Code (HOSPEC), is presented for evaluating hot-spot factors in a fast reactor. This code calculates the probability distribution of temperature in the whole core by means of a Monte Carlo method. Each Monte Carlo trial involves a complete thermal conduction analysis, thereby reducing errors due to assumptions in analytic procedures currently in use. With this code it is possible to determine the probability that fuel pellets, fuel pins, or subassemblies will exceed the limiting temperature, as well as determine the number of such “hot spots” that will develop. A quantitative comparison is made of the results obtained from this code with those from other analyses of a prototype fast reactor. The comparison has indicated, among other points, the following findings: 1. For zero hot spots, a conventional analytic evaluation code SHOSPA gives conservative results, i.e., ∼20°C at the fuel center, at a 3σ confidence level. 2. It is of crucial importance to take into account the temperature dependence of the properties of the materials. Neglecting such dependence leads to a much more conservative temperature prediction, e.g., ∼50°C at the fuel center.