ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New consortium to address industry need for nuclear heat and power
Hoping to tackle a growing global demand for energy, The Open Group, a vendor-neutral technology and standards membership organization, has announced the formation of the Industrial Advanced Nuclear Consortium (IANC) to collaborate on finding advanced nuclear energy solutions to serve industrial customers.
F. Schmittroth
Nuclear Science and Engineering | Volume 59 | Number 2 | February 1976 | Pages 117-139
Technical Paper | doi.org/10.13182/NSE76-A15684
Articles are hosted by Taylor and Francis Online.
The effect of uncertainties in the basic nuclear data needed in fission-product decay-heat summation calculations is considered. A variety of methods are developed to study the effect of errors in decay energies, half-lives, fission yields, and metastable states. Based on preliminary estimates of the uncertainties in the basic data, these methods show that decay heat for typical reactor exposures can be calculated with an accuracy of 7% or better for cooling times >10 sec. Attention is directed toward thermal fission of 235U, although the more general problem of other fissionable nuclides is considered. For cooling times <1000 sec, the major sources of error are due to uncertainties in the decay energies and fission-product charge distributions. All calculations are based on ENDF/B-IV cross sections.