ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Fred Holzer, Marshall F. Crouch
Nuclear Science and Engineering | Volume 6 | Number 6 | December 1959 | Pages 545-553
doi.org/10.13182/NSE59-A15517
Articles are hosted by Taylor and Francis Online.
The effects of leakage, detector and source perturbation, and the presence of higher modes in the neutron density distribution on a determination of the mean lifetime of thermal neutrons in water are discussed. The methods used in several recent experiments to minimize these sources of error are analyzed, with particular attention paid to the problem of suppressing the higher modes of the neutron density distribution. The effect of moderator dimensions is presented in terms of mode suppression factors for three characteristic moderator sizes. Finally, the mathematical analysis for a proposed large-geometry, high precision mean lifetime experiment is presented, in which the neutron distribution is calculated as a solution to an eigenvalue problem with variable boundary conditions. Three approximations are presented which allow the counter perturbation to be calculated and the mode content controlled.