ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NextEra and Google ink a deal to restart Duane Arnold
A day anticipated by many across the nuclear community has finally arrived: NextEra Energy has officially announced its plans to restart Iowa’s only nuclear power plant, the Duane Arnold Energy Center.
Walter Kofink
Nuclear Science and Engineering | Volume 6 | Number 6 | December 1959 | Pages 475-486
doi.org/10.13182/NSE59-A15505
Articles are hosted by Taylor and Francis Online.
The aim of this paper is to show that the treatment of the transport equation in cylindrical geometry does not involve essentially more tedious calculations than the treatment in plane geometry. A complete solution is given for homogeneous media including the complementary solutions. Every partial solution contains in its expansion of spherical harmonics some functions of a parameter with appropriate coefficients. It will be shown that these functions are Legendre polynomials and Legendre functions of the second kind as in the case of plane geometry for the “main” solution, and derivatives of these functions for the “complementary” solutions. They are solutions of the recursion relations for the expansion and yield a further recursion relation for the coefficients. Tables of these coefficients are given up to the eleventh spherical harmonic approximation and a general formula is derived for them. Two examples are worked out, a first based upon the supposition of a linearly anisotropic scattering law, and a second in which two higher terms of anisotropy are added to this law.