ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a bumping start in Atlanta, Ga., Tuesday morning with an opening plenary that felt like part dance party and part highlight reel showing off the latest industry achievements.
That intro left the audience pumped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
Walter Kofink
Nuclear Science and Engineering | Volume 6 | Number 6 | December 1959 | Pages 475-486
doi.org/10.13182/NSE59-A15505
Articles are hosted by Taylor and Francis Online.
The aim of this paper is to show that the treatment of the transport equation in cylindrical geometry does not involve essentially more tedious calculations than the treatment in plane geometry. A complete solution is given for homogeneous media including the complementary solutions. Every partial solution contains in its expansion of spherical harmonics some functions of a parameter with appropriate coefficients. It will be shown that these functions are Legendre polynomials and Legendre functions of the second kind as in the case of plane geometry for the “main” solution, and derivatives of these functions for the “complementary” solutions. They are solutions of the recursion relations for the expansion and yield a further recursion relation for the coefficients. Tables of these coefficients are given up to the eleventh spherical harmonic approximation and a general formula is derived for them. Two examples are worked out, a first based upon the supposition of a linearly anisotropic scattering law, and a second in which two higher terms of anisotropy are added to this law.