ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ribbon-cutting scheduled for Advanced Manufacturing Collaborative
Energy Secretary Chris Wright will attend the opening of the Advanced Manufacturing Collaborative in Aiken, S.C., on August 7. Wright will deliver remarks and join Savannah River National Laboratory leadership and partners for a ribbon-cutting ceremony.
Yoshitomo Uwamino, Hiroshi Sugita, Yuhri Kondo, Takashi Nakamura
Nuclear Science and Engineering | Volume 111 | Number 4 | August 1992 | Pages 391-403
Technical Paper | doi.org/10.13182/NSE111-391
Articles are hosted by Taylor and Francis Online.
An intense semimonoenergetic neutron field was made using a simple beryllium target system bombarded by protons of nine different energies between 20 and 40 MeV. Natural sodium, aluminum, vanadium, chromium, manganese, copper, zinc, and gold samples were irradiated at this field, and gamma rays from the samples were observed by a germanium detector. The production rates of 17 radionuclides were obtained for the nine different neutron fields, and the excitation functions of these 17 reaction channels of 23Na(n,2n)22Na, 27Al(n, α)24Na, 51V(n, α)48Sc, 51V(n,p)51Ti, 50Cr(n,3n)48Cr, 50Cr(n,2n)49Cr, 55Mn(n,4n)51Ti, 55Mn(n,4n)52Mn, 55Mn(n,2n)54Mn, 63Cu(n,3n) Cu, 63Cu(n,2n)62Cu, 65Cu(n,p)65Ni, 64Zn(n,t)62 Cu, 64Zn(n,3n)62Zn, 64Zn(n,2n)63Zn, 197Au(n,4n)194Au, and 197Au(n,2n)196Au were obtained for neutron energies up to 40 MeV by using the SAND-II and the NEUPAC unfolding codes and also least-squares fitting. The initial guess value for these methods was obtained primarily from calculations of the ALICE/LIVERMORE82 code.