ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
P. L. Viollet, J. P. Benque, J. Goussebaile
Nuclear Science and Engineering | Volume 84 | Number 4 | August 1983 | Pages 350-372
Technical Paper | doi.org/10.13182/NSE83-A15456
Articles are hosted by Taylor and Francis Online.
Finite difference numerical methods are available for the computation of unsteady non-isothermal flows with possibly strong buoyancy effects or head loss terms. The algorithm uses either velocity-pressure or velocity-stream-function formulations. The treatment of advective terms involves the method of characteristics. Arbitrary non-orthogonal curvilinear grids may be used, and turbulence is modeled by means of a k-ϵ eddy viscosity model. Two examples of application to liquid-metal fast breeder reactor thermal analysis are: 1. hot plenum flow in a pool-type vessel during flow and thermal transients, 2. unsteady flow in a pipe resulting from an inlet temperature change with a very low flow rate. For both cases, comparisons with experimental studies and applications to real reactors are shown.