ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
M. Drosg
Nuclear Science and Engineering | Volume 67 | Number 2 | August 1978 | Pages 190-220
Technical Paper | doi.org/10.13182/NSE67-190
Articles are hosted by Taylor and Francis Online.
An absolute scale for the differential cross sections of the reactions 3H(p, n)3He, 2H(d, n)3He, and 3H(d, n)4He, measured for incident energies between 6 and 17 MeV, was established using a calibrated time-of-flight system. Accurate charged-particle reference cross sections were inter-compared so that a common scale with an uncertainty of ±1.5% was obtained. By interchanging the target and beam nuclei, data were obtained at 180 deg in the original system for several cases. The new data were analyzed together with the previous data, and Legendre coefficients were extracted to permit presentation of the data between ∼5 and 20 MeV, thus extending and partly revising previous evaluations. The typical shape error of the angular distributions, as given by the Legendre coefficients, is <3% over the entire angular range. In addition, data on the neutron production at zero degree by breakup are given for the p-T and d-D reactions. By correcting the previous counter telescope data for the 1H(n, n)1H cross sections (according to more recent phase-shift analyses), scale ambiguities of ∼3% were resolved, thus indirectly verifying these phase shifts up to neutron energies of ∼16 MeV. However, at higher energies (above ∼23 MeV) for 3H(d, n)4He data, the corrected neutron counter telescope data deviate from the present analysis by ∼5%. Whether or not this difference is caused by the 1H(n, n)1H reference cross section used is open to further investigations.