ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
A new ANSI/ANS standard for liquid metal fire protection published
ANSI/ANS-54.8-2025, Liquid Metal Fire Protection in LMR Plants, received approval from the American National Standards Institute on September 2 and is now available for purchase.
The 2025 edition is a reinvigoration of the withdrawn ANS-54.8-1988 of the same title. The Advanced Reactor Codes and Standards Collaborative (ARCSC) identified the need for a current version of the standard via an industry survey.
Typical liquid metal reactor designs use liquid sodium as the coolant for both the primary and intermediate heat-transport systems. In addition, liquid sodium and NaK (a mixture of sodium and potassium that is liquid at room temperature) are often used in auxiliary heat-removal systems. Since these liquid metals can react readily with oxygen, water, and other compounds, special precautions must be taken in the design, construction, testing, and maintenance of the sodium/NaK systems to ensure that the potential for leakage is very small.
K. M. Case, Joel H. Ferziger, P. F. Zweifel
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 352-356
doi.org/10.13182/NSE61-A15377
Articles are hosted by Taylor and Francis Online.
It is first shown that the results of “asymptotic reactor theory” may be derived simply from the condition that an infinite medium rather than the correct finite medium diffusion equation be used to describe the thermal neutron flux in a reactor. In an asymptotic (bare, homogeneous, thermal) reactor, it is possible to describe the thermal flux through such an equation if the kernel of the infinite medium equation is defined properly, even when the reactor is not “large.” The relation between the kernels of the two equations is explicitly derived, and the conditions examined under which the kernel of the infinite medium equation can be interpreted physically as the Green's function of the infinite medium slowing-down problem. It is found that this interpretation is not restricted to the case in which the finite medium, slowing-down problem can be treated accurately by diffusion theory. Rather, the restriction is that the “asymptotic” portion of the flux give a reasonably accurate description of the finite medium Green's function. Thus, the use of transport kernels in asymptotic reactor theory is meaningful, a result which has been observed, but not explained, by a number of authors.