ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
K. M. Case, Joel H. Ferziger, P. F. Zweifel
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 352-356
doi.org/10.13182/NSE61-A15377
Articles are hosted by Taylor and Francis Online.
It is first shown that the results of “asymptotic reactor theory” may be derived simply from the condition that an infinite medium rather than the correct finite medium diffusion equation be used to describe the thermal neutron flux in a reactor. In an asymptotic (bare, homogeneous, thermal) reactor, it is possible to describe the thermal flux through such an equation if the kernel of the infinite medium equation is defined properly, even when the reactor is not “large.” The relation between the kernels of the two equations is explicitly derived, and the conditions examined under which the kernel of the infinite medium equation can be interpreted physically as the Green's function of the infinite medium slowing-down problem. It is found that this interpretation is not restricted to the case in which the finite medium, slowing-down problem can be treated accurately by diffusion theory. Rather, the restriction is that the “asymptotic” portion of the flux give a reasonably accurate description of the finite medium Green's function. Thus, the use of transport kernels in asymptotic reactor theory is meaningful, a result which has been observed, but not explained, by a number of authors.