ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
K. M. Case, Joel H. Ferziger, P. F. Zweifel
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 352-356
doi.org/10.13182/NSE61-A15377
Articles are hosted by Taylor and Francis Online.
It is first shown that the results of “asymptotic reactor theory” may be derived simply from the condition that an infinite medium rather than the correct finite medium diffusion equation be used to describe the thermal neutron flux in a reactor. In an asymptotic (bare, homogeneous, thermal) reactor, it is possible to describe the thermal flux through such an equation if the kernel of the infinite medium equation is defined properly, even when the reactor is not “large.” The relation between the kernels of the two equations is explicitly derived, and the conditions examined under which the kernel of the infinite medium equation can be interpreted physically as the Green's function of the infinite medium slowing-down problem. It is found that this interpretation is not restricted to the case in which the finite medium, slowing-down problem can be treated accurately by diffusion theory. Rather, the restriction is that the “asymptotic” portion of the flux give a reasonably accurate description of the finite medium Green's function. Thus, the use of transport kernels in asymptotic reactor theory is meaningful, a result which has been observed, but not explained, by a number of authors.