ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
What’s in your Dubai chocolate? Nuclear scientists test pistachios for toxins
For the uninitiated, Dubai chocolate is a candy bar filled with pistachio and tahini cream and crispy pastry recently popularized by social media influencers. While it’s easy to dismiss as a viral craze now past its peak, the nutty green confection has spiked global pistachio demand, and growers and processors are ramping up production. That means more pistachios need to be tested for aflatoxins—a byproduct of a common crop mold.
W. B. Doub
Nuclear Science and Engineering | Volume 10 | Number 4 | August 1961 | Pages 299-307
doi.org/10.13182/NSE61-A15371
Articles are hosted by Taylor and Francis Online.
An approximate heuristic expression for the particle self-shielding factor for a set of purely absorbing spheres of radius r and volume fraction V well mixed with another set of non-absorbing spheres has been derived. The resulting expression has been experimentally verified using transmission data at several incident neutron energies for a plate-type sample containing a mixture of aluminum and boron-carbide spheres with nominal diameters 85 ± 15µ. The boron-carbide spheres occupied about 37% of the sample volume. The transmission was measured at energies ranging from 0.03 to 1.2 ev using a crystal neutron spectrometer. Since, however, the sample contained boron-carbide spheres with a distribution of diameters, the experimental self-shielding factors are “average” values. It is shown, using an approximate model, that a plausible theoretical self-shielding factor is a volume weighted average of the self-shielding factors for the spheres of diameters, d1, d2, d3, … . The particle self-shielding factors derived by several other authors have also been compared with the present experimental results. The Hurwitz-Zweifel expression (1) gives quite bad agreement, though this is expected because of the high volume fraction of poison in the sample. The Burrus expression (2, 3) gives much better agreement though not as good as the expression derived in this paper.