ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
NECX debut: Shaping the next era of energy
The sold-out inaugural Nuclear Energy Conference & Expo (NECX) got off to a bumping start in Atlanta, Ga., Tuesday morning with an opening plenary that felt like part dance party and part highlight reel showing off the latest industry achievements.
That intro left the audience pumped up for Entergy’s CEO and NEI chair Drew Marsh, who welcomed everyone to the event, hosted jointly by the American Nuclear Society and the Nuclear Energy Institute. He spoke to a full house of more than 1,300 attendees, promising a blend of science, technology, policy, and advocacy centered around the future of nuclear energy.
J. H. Kittel, M. Novick, R. F. Buchanan
Nuclear Science and Engineering | Volume 4 | Number 2 | August 1958 | Pages 180-199
doi.org/10.13182/NSE58-A15361
Articles are hosted by Taylor and Francis Online.
As a result of the partial meltdown which occurred in EBR-I on November 29, 1955, it was necessary to remove the core assembly from the reactor and to separate the enriched fuel section from upper and lower unenriched blanket sections. A temporary cave was constructed on top of the reactor in order to remove the core assembly, and at this time about one-fourth of the fuel elements were removed. In order to perform further disassembly operations under less hazardous conditions, the core assembly was shipped from the Idaho Division of Argonne National Laboratory, at the National Reactor Testing Station, to the Lemont, Illinois, site of the Laboratory where disassembly was completed in a protective atmosphere. It was found that about 40 to 50% of the core had melted and reached temperatures ranging between approximately 850° and 1400°C, and that the molten portion had separated into three clearly defined zones characterized by different porosities. Densities of the zones ranged from 2.5 to 15.4 g/cm3, depending upon the degree of porosity. Chemical and mass spectrographic analyses indicated that relatively little mixing occurred in the core during the period in which it was molten, that the fuel alloy which penetrated the blanket sections originated primarily from the outer part of the molten zone, and that the blanket did not enter the molten phase. Observations during disassembly of the core and subsequent simulated meltdown experiments indicated that the porous structure which formed in the molten core could have resulted from the vaporization of entrained NaK.