ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
M. F. Dowling, B. M. Ip, S. I. Abdel-Khalik
Nuclear Science and Engineering | Volume 113 | Number 4 | April 1993 | Pages 300-313
Technical Paper | doi.org/10.13182/NSE93-A15330
Articles are hosted by Taylor and Francis Online.
Results are presented from laboratory experiments that examined the ability of dilute aqueous solutions of polyfethylene oxide) (PEO), a soluble drag-reducing polymer, to suppress spontaneous vapor explosions of molten tin. Polyfethylene oxide) with an average molecular weight of 4 x106 was used to prepare aqueous solutions with polymer concentrations from 10 weight parts per million (wppm) up to ≈525 wppm, with resulting solution viscosity ratios of 1.01 ≥ ηr ≥ 2.00 at 25°C, where ηr = ηsolution/ηwater. Twelve-gram masses of molten tin at temperatures of 600, 700, 800, 900, and 1000°C were poured from a height of 60 cm into a cylindrical Plexiglas vessel (12.5-cm i.d.) containing 1l of coolant solution at 25°C. The experiment was repeated ten times with each solution to check consistency and repeatability. The maximum pressures recorded for each experiment are reported and are used to compare the relative violence of spontaneous vapor explosions in each solution., Experiments with pure water were carried out to provide a reference of comparison for the polymer solutions. The peak pressures measured in the most dilute PEO solutions (1.02 ≥ ηr ≥ 1.13) spanned a much wider range than those for water, and pressures many times larger than any recorded in pure water were recorded—up to 240 kPa. When the solution viscosity ratio was 1.25 or larger, however, spontaneous explosions were markedly suppressed; above ηr = 2.00, they were entirely eliminated.