ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. F. Dowling, B. M. Ip, S. I. Abdel-Khalik
Nuclear Science and Engineering | Volume 113 | Number 4 | April 1993 | Pages 300-313
Technical Paper | doi.org/10.13182/NSE93-A15330
Articles are hosted by Taylor and Francis Online.
Results are presented from laboratory experiments that examined the ability of dilute aqueous solutions of polyfethylene oxide) (PEO), a soluble drag-reducing polymer, to suppress spontaneous vapor explosions of molten tin. Polyfethylene oxide) with an average molecular weight of 4 x106 was used to prepare aqueous solutions with polymer concentrations from 10 weight parts per million (wppm) up to ≈525 wppm, with resulting solution viscosity ratios of 1.01 ≥ ηr ≥ 2.00 at 25°C, where ηr = ηsolution/ηwater. Twelve-gram masses of molten tin at temperatures of 600, 700, 800, 900, and 1000°C were poured from a height of 60 cm into a cylindrical Plexiglas vessel (12.5-cm i.d.) containing 1l of coolant solution at 25°C. The experiment was repeated ten times with each solution to check consistency and repeatability. The maximum pressures recorded for each experiment are reported and are used to compare the relative violence of spontaneous vapor explosions in each solution., Experiments with pure water were carried out to provide a reference of comparison for the polymer solutions. The peak pressures measured in the most dilute PEO solutions (1.02 ≥ ηr ≥ 1.13) spanned a much wider range than those for water, and pressures many times larger than any recorded in pure water were recorded—up to 240 kPa. When the solution viscosity ratio was 1.25 or larger, however, spontaneous explosions were markedly suppressed; above ηr = 2.00, they were entirely eliminated.