ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Princeton-led team develops AI for fusion plasma monitoring
A new AI software tool for monitoring and controlling the plasma inside nuclear fuel systems has been developed by an international collaboration of scientists from Princeton University, Princeton Plasma Physics Laboratory (PPPL), Chung-Ang University, Columbia University, and Seoul National University. The software, which the researchers call Diag2Diag, is described in the paper, “Multimodal super-resolution: discovering hidden physics and its application to fusion plasmas,” published in Nature Communications.
H. Gruppelaar, G. Reffo
Nuclear Science and Engineering | Volume 62 | Number 4 | April 1977 | Pages 756-763
Technical Note | doi.org/10.13182/NSE77-A15219
Articles are hosted by Taylor and Francis Online.
In this Note the subject of width fluctuation correction to average compound-nucleus cross sections is reviewed, with special emphasis on neutron capture and scattering cross sections. Recent statistical model theories on the calculation of cross sections offer a new approach to the calculation of this correction factor. For low energies, the classical integration method gives the best description. At higher energies, the approximation of Tepel et al. with a semi-empirical relation for the elastic enhancement parameter is recommended for practical calculations. In the discussion about properties of the width fluctuation factor (WFF), the concept of a lumped channel with an effective number of degrees of freedom, veff, has proven to be helpful. A new definition of veff is given in this Note. Under certain conditions, the WFF for nonelastic processes can become larger than unity. This effect can be important in neutron capture when strong nonelastic channel competition is present. An example of this effect is given for the reaction 100Mo(n,γ) at 0.9 MeV, where, due to width fluctuation effects, the capture cross section is enhanced by ≈30%. Some other examples of width fluctuation effects are given for neutron elastic and inelastic scattering.