ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
V. C. Rogers, D. R. Dixon, C. G. Hoot, D. Costello, V. J. Orphan
Nuclear Science and Engineering | Volume 62 | Number 4 | April 1977 | Pages 716-725
Technical Paper | doi.org/10.13182/NSE77-A15212
Articles are hosted by Taylor and Francis Online.
Gamma-ray production cross sections were measured for (n,xγ) reactions in natural copper from 0.68- to 19.6-MeV neutron energy using the IRT Linac pulsed neutron source and a Ge(Li) detection system measuring gamma rays in the energy range from 365 to 6620 keV. Cross sections for 65 gamma rays are given using 17 neutron energy groups. For an additional 21 discrete gamma rays of uncertain origin, cross sections were determined for 11 neutron energy groups. The gamma-ray spectra for 16 neutron energy groups were also unfolded to obtain gamma-ray production cross sections for the sum of both discrete and continuum gamma rays. The cross sections are in general agreement with previous work for both the discrete peaks and the unfolded spectra, except near 15 MeV. Measurements of the discrete lines provide needed experimental data for the neutron energy region from 3 to 20 MeV.