ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
P. I. Johansson, B. Holmqvist
Nuclear Science and Engineering | Volume 62 | Number 4 | April 1977 | Pages 695-708
Technical Paper | doi.org/10.13182/NSE77-A15210
Articles are hosted by Taylor and Francis Online.
The prompt fission neutron spectrum emitted by a sample of 235U irradiated with 0.53-MeV neutrons has been measured in the 0.6- to 15-MeV energy range by using time-of-flight (TOF) techniques. In the present work, a major effort was made to obtain an accurate experimental determination of the energy response and efficiency function of the neutron detector over the entire neutron energy range of interest. For this purpose, the TOF spectrometer was calibrated with respect to energy in the 0.5- to 21-MeV range by observing neutron groups from various nuclear reactions. The energy dependence of the neutron detector efficiency was determined by observing the angular distributions of the H(n,n)H process in the 1- to 15-MeV energy range. The overlapping 0.6- to 3-MeV energy range was covered by the T(p,n)3He reaction. The result of the fission neutron spectrum measurements has been used to find a suitable distribution function describing the data in the entire energy interval. The best description was obtained with the distribution N1(E) exp(–1.02E)sinh(2.32E)1/2.