ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Edward T. Cheng, Robert W. Conn
Nuclear Science and Engineering | Volume 62 | Number 4 | April 1977 | Pages 601-616
Technical Paper | doi.org/10.13182/NSE77-A15204
Articles are hosted by Taylor and Francis Online.
The influence of design variations, such as the percentage of structural material in a tritium breeding zone or the enrichment of lithium in 6Li, on such important controlled thermonuclear reactor parameters as the tritium breeding ratio and the total nuclear energy produced has been studied using variational techniques for two different but general blanket designs. The first design uses liquid lithium as both coolant and breeding material, while the second uses a helium coolant and a solid-lithium-bearing compound as the tritium breeder. A variational technique based on variational interpolation is the primary computational tool, and it is shown that for linear perturbations in the transport operator and for a fixed source, only forward flux calculations are required to implement the variational interpolation approach. No adjoint functions are required, while any number of response functionals can be investigated. For both blanket designs, the influence of the choice of structural material, such as stainless-steel, molybdenum, niobium, vanadium, and aluminum structures, has been studied. The role of beryllium as a neutron multiplier with a solid breeder blanket is studied, and an optimum beryllium thickness is found that maximizes the breeding ratio. The influence of using graphite or the structural material as a neutron reflector and the effect of lithium burnup are also studied. It is found that for a given percentage of structural material in the tritium breeding zones, vanadium-structured systems achieve the highest breeding ratios, while molybdenum-structured systems produce the highest value of total nuclear heating. The effects of lithium burnup are small.