ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New coolants, new fuels: A new generation of university reactors
Here’s an easy way to make aging U.S. power reactors look relatively youthful: Compare them (average age: 43) with the nation’s university research reactors. The 25 operating today have been licensed for an average of about 58 years.
Walter E. Clark, W. B. Howerton, B. M. Benjamin, W. H. Baldwin
Nuclear Science and Engineering | Volume 66 | Number 1 | April 1978 | Pages 110-117
Technical Paper | doi.org/10.13182/NSE78-A15193
Articles are hosted by Taylor and Francis Online.
To determine the ultimate fate of organic material present in nuclear fuel reprocessing solutions and the chemical nature of the last surviving residues, organic products of the hydrolysis/nitrolysis of tributyl phosphate were subjected to further degradation with boiling 20 M HNO3 (Iodox Process) and carbon balances were run. Except for methyl nitrate, nitrate esters were oxidized in refluxing 20 M HNO3, primarily to a mixture of carbon dioxide and the corresponding and shorter chain aliphatic acids. Typically, 40% or more of the carbon from the nitrate esters was converted to CO2. Except for formic acid, the straight-chain monobasic acids oxidized slowly. Compounds identified among those resulting from oxidation of butyric acid (e.g., from the oxidation of butyl nitrate) included succinic and oxalic acids, 3- and 4-hydroxybutyric acids, nitrate esters of 3- and 4-hydroxybutyric acid, butyrolactone, and 3-nitrobutyric acid. The mechanisms for formation of these products are briefly discussed. Oxalic acid and the hydroxy aliphatic acids have some potential for complexing certain metallic fission products. These results show that traces of organic materials will always be present in actual fuel processing solutions unless special measures are taken to ensure their removal. This conclusion was reinforced by analysis of recycle acid from the Savannah River Plant. The possible implications to a reprocessing plant using 100% recycle are briefly discussed.