ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Walter E. Clark, W. B. Howerton, B. M. Benjamin, W. H. Baldwin
Nuclear Science and Engineering | Volume 66 | Number 1 | April 1978 | Pages 110-117
Technical Paper | doi.org/10.13182/NSE78-A15193
Articles are hosted by Taylor and Francis Online.
To determine the ultimate fate of organic material present in nuclear fuel reprocessing solutions and the chemical nature of the last surviving residues, organic products of the hydrolysis/nitrolysis of tributyl phosphate were subjected to further degradation with boiling 20 M HNO3 (Iodox Process) and carbon balances were run. Except for methyl nitrate, nitrate esters were oxidized in refluxing 20 M HNO3, primarily to a mixture of carbon dioxide and the corresponding and shorter chain aliphatic acids. Typically, 40% or more of the carbon from the nitrate esters was converted to CO2. Except for formic acid, the straight-chain monobasic acids oxidized slowly. Compounds identified among those resulting from oxidation of butyric acid (e.g., from the oxidation of butyl nitrate) included succinic and oxalic acids, 3- and 4-hydroxybutyric acids, nitrate esters of 3- and 4-hydroxybutyric acid, butyrolactone, and 3-nitrobutyric acid. The mechanisms for formation of these products are briefly discussed. Oxalic acid and the hydroxy aliphatic acids have some potential for complexing certain metallic fission products. These results show that traces of organic materials will always be present in actual fuel processing solutions unless special measures are taken to ensure their removal. This conclusion was reinforced by analysis of recycle acid from the Savannah River Plant. The possible implications to a reprocessing plant using 100% recycle are briefly discussed.