ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
Walter E. Clark, W. B. Howerton, B. M. Benjamin, W. H. Baldwin
Nuclear Science and Engineering | Volume 66 | Number 1 | April 1978 | Pages 110-117
Technical Paper | doi.org/10.13182/NSE78-A15193
Articles are hosted by Taylor and Francis Online.
To determine the ultimate fate of organic material present in nuclear fuel reprocessing solutions and the chemical nature of the last surviving residues, organic products of the hydrolysis/nitrolysis of tributyl phosphate were subjected to further degradation with boiling 20 M HNO3 (Iodox Process) and carbon balances were run. Except for methyl nitrate, nitrate esters were oxidized in refluxing 20 M HNO3, primarily to a mixture of carbon dioxide and the corresponding and shorter chain aliphatic acids. Typically, 40% or more of the carbon from the nitrate esters was converted to CO2. Except for formic acid, the straight-chain monobasic acids oxidized slowly. Compounds identified among those resulting from oxidation of butyric acid (e.g., from the oxidation of butyl nitrate) included succinic and oxalic acids, 3- and 4-hydroxybutyric acids, nitrate esters of 3- and 4-hydroxybutyric acid, butyrolactone, and 3-nitrobutyric acid. The mechanisms for formation of these products are briefly discussed. Oxalic acid and the hydroxy aliphatic acids have some potential for complexing certain metallic fission products. These results show that traces of organic materials will always be present in actual fuel processing solutions unless special measures are taken to ensure their removal. This conclusion was reinforced by analysis of recycle acid from the Savannah River Plant. The possible implications to a reprocessing plant using 100% recycle are briefly discussed.