ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
C. Nordborg, L. Nilsson, H. Condé, L. G. Strömberg
Nuclear Science and Engineering | Volume 66 | Number 1 | April 1978 | Pages 75-83
Technical Paper | doi.org/10.13182/NSE78-A15189
Articles are hosted by Taylor and Francis Online.
The gamma-ray production cross section of oxygen has been measured at incident neutron energies between 7 and 10.5 MeV. The production of the 6.13-, 6.92-, and 7.12-MeV gamma rays by the (n,n′γ) reaction in 16O and the 3.09-, 3.68-, and 3.85-MeV gamma rays by the (n,αγ) reaction has been studied. In addition, the production cross section of the 4.44-MeV gamma ray from inelastic neutron scattering on carbon has been measured at one neutron energy, since many earlier measurements of gamma-ray production cross sections have been performed relative to this cross section. Monoenergetic neutrons were produced by the 2H(d,n)3He and 3H(p,n)3He reactions. The gamma radiation was detected by a large Nal(Tl) scintillator using time-of-flight techniques. The neutron flux was measured by means of a proton-recoil telescope using the n-p scattering cross section. The differential gamma-ray production cross sections were measured at 90 deg. In addition, the angular distribution for the 6.13-MeV gamma ray was determined at one neutron energy. The results for oxygen, which show pronounced structure of the cross section for the 6.13-MeV gamma ray over the whole energy region, are in disagreement with current data files, whereas the results for carbon are in agreement with a number of recent investigations of the 12C(n,n′γ)12C and 12C(n,n′)12C reactions.