ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hinkley Point C gets over $6 billion in financing from Apollo
U.S.-based private capital group Apollo Global has committed £4.5 billion ($6.13 billion) in financing to EDF Energy, primarily to support the U.K.’s Hinkley Point C station. The move addresses funding needs left unmet since China General Nuclear Power Corporation—which originally planned to pay for one-third of the project—exited in 2023 amid U.K. government efforts to reduce Chinese involvement.
C. Nordborg, L. Nilsson, H. Condé, L. G. Strömberg
Nuclear Science and Engineering | Volume 66 | Number 1 | April 1978 | Pages 75-83
Technical Paper | doi.org/10.13182/NSE78-A15189
Articles are hosted by Taylor and Francis Online.
The gamma-ray production cross section of oxygen has been measured at incident neutron energies between 7 and 10.5 MeV. The production of the 6.13-, 6.92-, and 7.12-MeV gamma rays by the (n,n′γ) reaction in 16O and the 3.09-, 3.68-, and 3.85-MeV gamma rays by the (n,αγ) reaction has been studied. In addition, the production cross section of the 4.44-MeV gamma ray from inelastic neutron scattering on carbon has been measured at one neutron energy, since many earlier measurements of gamma-ray production cross sections have been performed relative to this cross section. Monoenergetic neutrons were produced by the 2H(d,n)3He and 3H(p,n)3He reactions. The gamma radiation was detected by a large Nal(Tl) scintillator using time-of-flight techniques. The neutron flux was measured by means of a proton-recoil telescope using the n-p scattering cross section. The differential gamma-ray production cross sections were measured at 90 deg. In addition, the angular distribution for the 6.13-MeV gamma ray was determined at one neutron energy. The results for oxygen, which show pronounced structure of the cross section for the 6.13-MeV gamma ray over the whole energy region, are in disagreement with current data files, whereas the results for carbon are in agreement with a number of recent investigations of the 12C(n,n′γ)12C and 12C(n,n′)12C reactions.