ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. Leconte, J.-P. Hudelot, M. Antony
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 208-215
Technical Paper | doi.org/10.13182/NSE11-33
Articles are hosted by Taylor and Francis Online.
The need for accurate nuclear data represents a permanent challenge to improve the calculation tools used in reactor physics. Uranium-235 is one of the most important isotopes, and its related nuclear data need to be known with a high degree of accuracy. In this context, many studies have been undertaken to improve the fission yields of 235U for the main fission products in spent fuels.For a few years, an increasing interest has been observed for high-conversion light water reactors, for better use of the fuel and for nonproliferation considerations. These concepts are based on a low moderation ratio (˜0.9) and the use of highly enriched mixed oxide fuels (>8%). Because of a neutron flux much harder than in pressurized water reactors, calculations require a good knowledge of nuclear data in the epithermal range to accurately predict the fuel depletion with burnup. In particular, the energy dependence of the fission yields must be considered, because of the existence of fluctuations of the fragment fission yields in the resonances of 235U(n,f). Unfortunately, the fluctuations are incorrectly taken into account in calculation codes because of the rough energy description in the usual nuclear data libraries.In this paper, integral experiments are presented for the identification and the quantification of this effect in an almost 1/E neutron spectrum. The experiments consist of the irradiation of 235U samples in the MINERVE reactor (CEA Cadarache), first in a mostly thermal neutron spectrum and second in a mostly epithermal one. Measurements of some abundant fission products are realized with gamma-ray spectrometry and show fluctuations of the 235U cumulative fission yields between the two experiments. Results are interpreted with the multimodal random neck rupture model as a variation of 5% of the weight ratio w1/w2 between the standard I and standard II fission modes, and compared with the differential experiments.