ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
P. Leconte, J.-P. Hudelot, M. Antony
Nuclear Science and Engineering | Volume 172 | Number 2 | October 2012 | Pages 208-215
Technical Paper | doi.org/10.13182/NSE11-33
Articles are hosted by Taylor and Francis Online.
The need for accurate nuclear data represents a permanent challenge to improve the calculation tools used in reactor physics. Uranium-235 is one of the most important isotopes, and its related nuclear data need to be known with a high degree of accuracy. In this context, many studies have been undertaken to improve the fission yields of 235U for the main fission products in spent fuels.For a few years, an increasing interest has been observed for high-conversion light water reactors, for better use of the fuel and for nonproliferation considerations. These concepts are based on a low moderation ratio (˜0.9) and the use of highly enriched mixed oxide fuels (>8%). Because of a neutron flux much harder than in pressurized water reactors, calculations require a good knowledge of nuclear data in the epithermal range to accurately predict the fuel depletion with burnup. In particular, the energy dependence of the fission yields must be considered, because of the existence of fluctuations of the fragment fission yields in the resonances of 235U(n,f). Unfortunately, the fluctuations are incorrectly taken into account in calculation codes because of the rough energy description in the usual nuclear data libraries.In this paper, integral experiments are presented for the identification and the quantification of this effect in an almost 1/E neutron spectrum. The experiments consist of the irradiation of 235U samples in the MINERVE reactor (CEA Cadarache), first in a mostly thermal neutron spectrum and second in a mostly epithermal one. Measurements of some abundant fission products are realized with gamma-ray spectrometry and show fluctuations of the 235U cumulative fission yields between the two experiments. Results are interpreted with the multimodal random neck rupture model as a variation of 5% of the weight ratio w1/w2 between the standard I and standard II fission modes, and compared with the differential experiments.